Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.055
Filtrar
1.
Biomark Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623925

RESUMO

Objective: The aim of this study as to unveil changes in serum inflammatory factors in pregnant women with genital tract group B Streptococcus (GBS) infection and their predictive value for premature rupture of membranes (PROM) complicated by chorioamnionitis (CS) and adverse pregnancy outcomes. Methods: The value of serum inflammatory factor levels in predicting PROM complicating CS and adverse pregnancy outcomes in GBS-infected pregnant women was evaluated by ELISA. Results: Serum IL-6, TNF-α, PCT and hs-CRP levels were higher in pregnant women with GBS infection. The combined diagnosis of these factors had excellent diagnostic value in PROM complicating CS and adverse pregnancy outcomes. Conclusion: Joint prediction of IL-6, TNF-α, PCT and hs-CRP has the best predictive value for PROM complicating CS and adverse pregnancy outcomes.

2.
Drug Discov Ther ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631866

RESUMO

Previous reports proposed the concept and criteria of epidermotropic metastatic malignant melanoma (EMMM): (a) dermal involvement equal to or broader than the epidermal involvement, (b) atypical melanocytes within the dermis, (c) thinning of the epidermis, (d) widening of the papillary dermis with an epithelial collarette, and (e) vascular invasion of atypical melanocytes. However, it remains unclear whether EMMM also involves the mucosal epithelium. In this case, the patient was diagnosed with EMMM based on the histopathological findings of the patient's multiple skin lesions and clinical course. The patient also developed metastasis to the hypopharynx. Although histopathological findings of the lesion suggested the possibility of melanoma in situ, as the lesion included atypical melanocytes in the mucosal epithelium, the clinical course supported the diagnosis of hypopharyngeal metastasis from EMMM. This case suggests that EMMM may have epitheliotropic features not only in the skin but also in the mucosa.

3.
Surg Endosc ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619558

RESUMO

BACKGROUND: Endoscopic submucosal dissection (ESD) requires high endoscopic technical skills, and trainees should develop effective training methods. In collaboration with KOTOBUKI Medical, we developed the G-Master, which is a non-animal training model that can simulate various parts of gastric ESD. We aimed to clarify the usefulness of the G-Master for inexperienced ESD trainees. METHODS: We collected data from the first 5 gastric ESD cases conducted by 15 inexperienced ESD trainees at 5 participating centers between 2018 and 2022. The participants were divided into two groups: the G-Master training and non-G-Master training groups. Outcome measurements, such as procedural speed, perforation rate, self-completion rate, and en bloc resection rate, were compared between the two groups retrospectively. RESULTS: A total of 75 gastric ESD cases were included in this study. The G-Master training group included 25 cases performed by 5 trainees, whereas the non-G-Master training group included 50 cases performed by 10 trainees. The median procedural speed for all cases was significantly faster in the G-Master training group than in the non-G-Master training group. Moreover, the procedural speed was linearly improved from the initial to the last cases in the lower location in the G-Master training group compared with the non-G-Master training group. In addition, although there was no significant difference, the G-Master training group showed lower rates of perforation and a lesser need to transition to expert operators than the non-G-Master training group. CONCLUSION: The G-Master could improve the ESD skills of inexperienced ESD trainees.

4.
Sci Bull (Beijing) ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38627135

RESUMO

The advancement of flexible electronics demands improved components, necessitating heat dissipation membranes (HDMs) to exhibit high thermal conductivity while maintaining structural integrity and performance stability even after extensive deformation. Herein, we have devised a laser-modulated reduction technique for graphene oxide (GO), enabling the fabrication of high-quality, large-scale, low-defect graphene, which yields high-performance HDMs after orderly deposition. The work underscores the crucial role of the laser wavelength and dispersion liquid's coupling intensity in influencing the morphology and properties of graphene. Optimal coupling effect and energy conversion are realized when a laser of 1064 nm wavelength irradiates a triethylene glycol (TEG)/N,N-Dimethylformamide (DMF) dispersion. This unique synergy generates high transient energy, which facilitates the deprotonation process and ensures a swift, comprehensive GO reduction. In contrast to conventional water-based laser reduction methods, the accelerated reaction magnifies the size of the graphene sheets by mitigating the ablation effect. After membrane construction with an ordered structure, the corresponding membrane exhibits a high thermal conductivity of 1632 W m-1 K-1, requiring only ∼1/10 of the total preparation time required by other reported methods. Remarkably, the resulting HDM demonstrates superior resilience against creasing and folding, maintaining excellent smoothness and negligible reduction in thermal conductivity after violent rubbing. The combination of exceptional flexibility and thermal conductivity in HDMs paves the way for long-term practical use in the flexible electronics industry.

5.
Sci Rep ; 14(1): 8559, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609441

RESUMO

The interaction of rarefied gases with functionalized surfaces is of great importance in technical applications such as gas separation membranes and catalysis. To investigate the influence of functionalization and rarefaction on gas flow rate in a defined geometry, pressure-driven gas flow experiments with helium and carbon dioxide through plain and alkyl-functionalized microchannels are performed. The experiments cover Knudsen numbers from 0.01 to 200 and therefore the slip flow regime up to free molecular flow. To minimize the experimental uncertainty which is prevalent in micro flow experiments, a methodology is developed to make optimal use of the measurement data. The results are compared to an analysis-based hydraulic closure model (ACM) predicting rarefied gas flow in straight channels and to numerical solutions of the linearized S-model and BGK kinetic equations. The experimental data shows that if there is a difference between plain and functionalized channels, it is likely obscured by experimental uncertainty. This stands in contrast to previous measurements in smaller geometries and demonstrates that the surface-to-volume ratio of 0.4 µ m - 1 seems to be too small for the functionalization to have a strong influence and highlights the importance of geometric scale for surface effects. These results also shed light on the molecular reflection characteristics described by the TMAC.

6.
Nano Lett ; 24(15): 4618-4624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588453

RESUMO

Extracting osmotic energy from waste organic solutions via reverse electrodialysis represents a promising approach to reuse such industrial wastes and helps to mitigate the ever-growing energy needs. Herein, a molecularly thin membrane of covalent organic frameworks is engineered via interfacial polymerization to investigate its ion transport behavior in organic solutions. Interestingly, a significant deviation from linearity between ion conductance and reciprocal viscosity is observed, attributed to the nanoscale confinement effect on intermolecular interactions. This finding suggests a potential strategy to modulate the influence of apprarent viscosity on transmembrane transport. The osmotic energy harvesting of the ultrathin membrane in organic systems was studied, achieving an unprecedented output power density of over 84.5 W m-2 at a 1000-fold salinity gradient with a benign conversion efficiency and excellent stability. These findings provide a meaningful stepping stone for future studies seeking to fully leverage the potentials of organic systems in energy harvesting applications.

7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621879

RESUMO

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Assuntos
Miócitos Cardíacos , ATPase Trocadora de Sódio-Potássio , Ratos , Animais , Células Cultivadas , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética
8.
Acta Physiol (Oxf) ; : e14143, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577966

RESUMO

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.

10.
Exp Eye Res ; : 109884, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570181

RESUMO

Recent studies in rabbits and case reports in humans have demonstrated the efficacy of topical losartan in the treatment of corneal scarring fibrosis after a wide range of injuries, including chemical burns, infections, surgical complications, and some diseases. It is hypothesized that the effect of losartan on the fibrotic corneal stroma occurs through a two-phase process in which losartan first triggers the elimination of myofibroblasts by directing their apoptosis via inhibition of extracellular signal-regulated kinase (ERK)-mediated signal transduction, and possibly through signaling effects on the viability and development of corneal fibroblast and fibrocyte myofibroblast precursor cells. This first step likely occurs within a week or two in most corneas with fibrosis treated with topical losartan, but the medication must be continued for much longer until the epithelial basement membrane (EBM) is fully regenerated or new myofibroblasts will develop from precursor cells. Once the myofibroblasts are eliminated from the fibrotic stroma, corneal fibroblasts can migrate into the fibrotic tissue and reabsorb/reorganize the disordered extracellular matrix (ECM) previously produced by the myofibroblasts. This second stage is longer and more variable in different eyes of rabbits and humans, and accounts for most of the variability in the time it takes for the stromal opacity to be markedly reduced by topical losartan treatment. Eventually, keratocytes reemerge in the previously fibrotic stromal tissue to fine-tune the collagens and other ECM components and maintain the normal structure of the corneal stroma. The efficacy of losartan in the prevention and treatment of corneal fibrosis suggests that it acts as a surrogate for the EBM, by suppressing TGF beta-directed scarring of the wounded corneal stroma, until control over TGF beta action is re-established by a healed EBM, while also supporting regeneration of the EBM by allowing corneal fibroblasts to occupy the subepithelial stroma in the place of myofibroblasts.

11.
Environ Toxicol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567716

RESUMO

Many factors induced by environmental toxicants have made oxidative stress a risk factor for the intestinal barrier injury and growth restriction, which is serious health threat for human and livestock and induces significant economic loss. It is well-known that diquat-induced oxidative stress is implicated in the intestinal barrier injury. Although some studies have shown that mitochondria are the primary target organelle of diquat, the underlying mechanism remains incompletely understood. Recently, mitochondria-associated endoplasmic reticulum membranes (MAMs) have aroused increasing concerns among scholars, which participate in mitochondrial dynamics and signal transduction. In this study, we investigated whether MAMs involved in intestinal barrier injury and mitochondrial dysfunction induced by diquat-induced oxidative stress in piglets and porcine intestinal epithelial cells (IPEC-J2 cells). The results showed that diquat induced growth restriction and impaired intestinal barrier. The mitochondrial reactive oxygen species (ROS) was increased and mitochondrial membrane potential was decreased following diquat exposure. The ultrastructure of mitochondria and MAMs was also disturbed. Meanwhile, diquat upregulated endoplasmic reticulum stress marker protein and activated PERK pathway. Furthermore, loosening MAMs alleviated intestinal barrier injury, decrease of antioxidant enzyme activity and mitochondrial dysfunction induced by diquat in IPEC-J2 cells, while tightening MAMs exacerbated diquat-induced mitochondrial dysfunction. These results suggested that MAMs may be associated with the intestinal barrier injury and mitochondrial dysfunction induced by diquat in the jejunum of piglets.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38603541

RESUMO

The urgent need for CO2 capture and hydrogen energy has attracted great attention owing to greenhouse gas emissions and global warming problems. Efficient CO2 capture and H2 purification with membrane technology will reduce greenhouse gas emissions and help reach a carbon-neutral society. Here, 4-sulfocalix[4]arene (SC), which has an intrinsic cavity, was embedded into the Matrimid membrane as a molecular gatekeeper for CO2 capture and H2 purification. The interactions between SC and the Matrimid polymer chains immobilize SC molecules into the interchain gaps of the Matrimid membrane, and the strong hydrogen and ionic bondings were able to form homogeneous mixed-matrix membranes. The incorporation of the SC molecular gatekeeper with exceptional molecular-sieving properties improved the gas separation performance of the mixed-matrix membranes. Compared with that of the Matrimid membrane, the CO2 permeability of the Matrimid-SC-3% membrane increased from 16.75 to 119.78 Barrer, the CO2/N2 selectivity increased from 29.39 to 106.95, and the CO2/CH4 selectivity increased from 29.91 to 140.92. Furthermore, when the permeability of H2 was increased to 172.20 Barrer, the H2/N2 and H2/CH4 selectivities reached approximately 153.75 and 202.59, respectively, which are far superior to those of most existing Matrimid-based materials. The mixed-matrix membranes also exhibited excellent long-term operation stability, with separation performance for several important gas pairs still overtaking the Robeson upper limit after aging for 400 days.

13.
Small ; : e2310064, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607265

RESUMO

Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self-reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S-modified Ni oxyhydroxide (Fe/S-NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation-dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ-NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d-band center, decreasing the energy barrier of the rate-determining step (*O→*OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S-NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm-2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S-NiOOH//Pt/C-60 °C) can deliver 1000 mA cm-2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self-reconstruction strategy for high-performance AEM electrocatalysts for future hydrogen economy.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38607352

RESUMO

Wound healing of the oral mucosa is an urgent problem in modern dental surgical practice. This research article presents and compares the findings of the investigations of the structural, physicochemical, and biological characteristics of two types of polymeric membranes used for the regeneration of oral mucosa. The membranes were prepared from poly(tetrafluoroethylene) (PTFE) and a copolymer of vinylidene fluoride and tetrafluoroethylene (VDF-TeFE) and analyzed via scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. Investigation results obtained indicate that both types of membranes are composed of thin fibers: (0.57 ± 0.25) µm for PTFE membranes and (0.43 ± 0.14) µm for VDF-TeFE membranes. Moreover, the fibers of VDF-TeFE membranes exhibit distinct piezoelectric properties, which are confirmed by piezoresponse force microscopy and X-ray diffraction. Both types of membranes are hydrophobic: (139.7 ± 2.5)° for PTFE membranes and (133.5 ± 2.0)° for VDF-TeFE membranes. In vitro assays verify that both membrane types did not affect the growth and division of mice fibroblasts of the 3T3-L1 cell line, with a cell viability in the range of 88-101%. Finally, in vivo comparative experiments carried out using Wistar rats demonstrate that the piezoelectric VDF-TeFE membranes have a high ability to regenerate oral mucosa.

15.
Anal Sci ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598050

RESUMO

Lateral flow assays have been widely used for detecting coronavirus disease 2019 (COVID-19). A lateral flow assay consists of a Nitrocellulose (NC) membrane, which must have a specific lateral flow rate for the proteins to react. The wicking rate is conventionally used as a method to assess the lateral flow in membranes. We used multiple regression and artificial neural networks (ANN) to predict the wicking rate of NC membranes based on membrane recipe data. The developed ANN predicted the wicking rate with a mean square error of 0.059, whereas the multiple regression had a square error of 0.503. This research also highlighted the significant impact of the water content on the wicking rate through images obtained from scanning electron microscopy. The findings of this research can cut down the research and development costs of novel NC membranes with a specific wicking rate significantly, as the algorithm can predict the wicking rate based on the membrane recipe.

16.
Contact (Thousand Oaks) ; 7: 25152564241244941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585502

RESUMO

Changes in the connections between the endoplasmic reticulum (ER) and mitochondria, as well as alterations in mitochondria-associated ER membrane (MAM) signalling, have been documented in various neurodegenerative diseases affecting the brain. Despite the growing recognition of the significance of the gut-brain axis in neurodegenerative conditions, there has been no prior investigation into the biology of MAM within the enteric nervous system (ENS). Our recent research reveals, for the first time, the existence of connections between the ER and mitochondria within enteric neurons. Additionally, we observed alterations in the dynamics of these connections in the enteric neurons from a mouse model exhibiting age-related neurodegeneration. These findings provide the first detailed characterization of MAM in the ENS under physiological conditions and in a mouse model of age-associated neurodegeneration and shed new light on the potential role of enteric MAM in the context of neurodegenerative disorders.

17.
Heliyon ; 10(7): e28455, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586360

RESUMO

The performances of polybenzimidazole (PBI) and polysulfone (PSF) membranes for recovering water from reverse osmosis (RO) reject of brackish water through forward osmosis (FO) were assessed and compared. Non-functionalised multi-walled carbon nanotubes (MWCNT) were added to the membrane casting solutions, with concentrations ranging from 0 to 3 wt%. The experiment was conducted for eight samples using RO reject of brackish water as the feed solution (FS) and 2 M analytical grade MgCl2 as the draw solution (DS). The hydrophilicity, water permeability, salt rejection rate (Rs), water flux (WF) and porosity of the membranes improved with increasing MWCNT content up to 2 wt%. Also, the structural parameter, salt permeability and reverse solute flux decreased. PBI/MWCNT2 wt% exhibited the best performance among the membranes tested compared with porosity of 70 ± 4 %, structural parameter of 0.36 ± 0.2 µm, and Rs of 93.5 %. In contrast with the pristine PBI membrane, an average water flux enhancement of 15 % and 49 % was observed for the FS and DS sides, respectively, for PBI/MWCNT2 wt%. It is evident from the results that including MWCNT improves the performance of both membranes, with better relative performance for PBI membranes than PSF membranes.

18.
Angew Chem Int Ed Engl ; : e202402509, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588046

RESUMO

Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.

19.
Wiad Lek ; 77(2): 214-224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592981

RESUMO

OBJECTIVE: Aim: Based on retrospective analysis recognize the key factors of development of premature childbirth and elaborate highly specific criteria for individual prognosis to improve perinatal outcomes. PATIENTS AND METHODS: Materials and Methods: A retrospective analysis of the birth histories of 250 women and their newborns with spontaneous preterm births at 22-36 weeks was conducted using archival data from the department for pregnant women with obstetric pathology of the State Institution "Institute of Pediatrics, Obstetrics and Gynecology named by academician OM Lukianova of the National Academy of Medical Sciences of Ukraine". RESULTS: Results: Important risk factors for premature rupture of membranes (PROM) in preterm pregnancy include the presence of sexually transmitted diseases (χ2=31.188, p=0.001), bacterial vaginosis (χ2=30.913, p=0.0001), a history of abortion and/or preterm birth (χ2=16.62, p=0.0002), SARS during pregnancy (χ2=16.444, p=0.0002), chronic adnexitis in anamnesis (χ2=11.522, p=0.0031), inflammatory cervical disease (χ2=11.437, p=0.0032), anaemia (χ2=10.815, p=0.0044), isthmic-cervical insufficiency (ІСІ) (χ2=10.345, p=0.0057), chronic pyelonephritis with exacerbation (χ2=9.16, p=0.01), smoking during pregnancy (χ2=10.815, p=0.0044). CONCLUSION: Conclusions: The results of a retrospective analysis of 250 cases of preterm birth at 22 to 36 weeks allowed us to identify ways to effectively use existing diagnostic measures to determine readiness for pregnancy and the possibility of prolonging pregnancy to the viability of the newborn. Ways to improve the prevention of preterm birth and the design of further research were identified.


Assuntos
Aborto Espontâneo , Ruptura Prematura de Membranas Fetais , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Criança , Nascimento Prematuro/prevenção & controle , Estudos Retrospectivos , Ruptura Prematura de Membranas Fetais/prevenção & controle , Ucrânia
20.
Mass Spectrom (Tokyo) ; 13(1): A0145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577169

RESUMO

Skin dryness and irritant contact dermatitis induced by the prolonged use of surgical gloves are issues faced by physicians. To address these concerns, manufacturers have introduced surgical gloves that incorporate a moisturizing component on their inner surface, resulting in documented results showing a reduction in hand dermatitis. However, the spatial distribution of moisturizers applied to surgical gloves within the integument remains unclear. Using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI), we investigated the spatial distribution of moisturizers in surgical gloves within artificial membranes. Recently, dermal permeation assessments using three-dimensional models, silicone membranes, and Strat-M have gained attention as alternative approaches to animal testing. Therefore, in this study, we established an in vitro dermal permeation assessment of commercially available moisturizers in surgical gloves using artificial membranes. In this study, we offer a methodology to visualize the infiltration of moisturizers applied to surgical gloves into an artificial membrane using MALDI-MSI, while evaluating commercially available moisturizer-coated surgical gloves. Using our penetration evaluation method, we confirmed the infiltration of the moisturizers into the polyethersulfone 2 and polyolefin layers, which correspond to the epidermis and dermis of the skin, after the use of surgical gloves. The MSI-based method presented herein demonstrated the efficacy of evaluating the permeation of samples containing active ingredients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...